Track IX: Pressure Pipe Rehabilitation
Testing and Design

Wednesday, Jan 30, 2019
Fort Worth, TX

Chris Macey, P. Eng.
Americas Technical Practice Leader
Condition Assessment and Rehabilitation

David P. Kozman, P.E.
Applications Engineer
Pressure pipeline rehabilitation technologies are designed to accommodate a wide range of host pipe materials, conditions and applications:

- Potable water
- Raw water
- Sewer force mains
- Industrial settings

Lining systems can be grouped into one of the following processes:

- Cement mortar lining (CML)
- Spray-on polymer lining (PL)
- Cured-in-place pipe lining (CIPP)
- Close-fit lining (CFL)
- Sliplining (SL)
- Carbon fiber reinforced pipe (CFRP)
Structural classifications of linings loosely defined in AWWA M28, *Rehabilitation of Water Mains* – Appendix A

- No design guidance given

Class IV Linings

Class IV linings, termed fully structural or structurally independent, possess the following characteristics:

1. A long-term (50-year) internal burst strength, when tested independently from the host pipe, equal to or greater than the MAOP of the pipe to be rehabilitated.

2. The ability to survive any dynamic loading or other short-term effects associated with sudden failure of the host pipe due to internal pressure loads.

Class IV linings are sometimes considered to be equivalent to replacement pipe, although such linings may not be designed to meet the same requirements for external buckling or longitudinal/bending strength as the original pipe. Also, they may be of smaller internal diameters. Class IV linings can, of course, be used in circumstances similar to those for Class II and III, but their use is essential for host pipes suffering from generalized external corrosion where the mode of failure has been, or is likely to be, catastrophic longitudinal cracking.

Some available renovation technologies can offer both Class II and III and Class IV linings, while a given lining system may be rated as Class IV for MAOP levels up to a threshold value and Class II and III for higher pressures.
Pressure Pipe Lining Design Methodology

• ASTM F1216 first introduced in 1989
• To date, most pressure liners in North America have used Appendix X1 of ASTM F1216 as the design basis for liners
• With provisions for gravity and pressure pipe loading applications, it provides a design approach for un-bonded, close-fit liners with checks for:
 ➢ Gravity flow pipelines
 ▪ Buckling due to hydrostatic loads limited by stiffness (modified Timoshenko)
 ▪ Hydrostatic loads limited by flexural strength
 ▪ Buckling loads due to earth/live loads (modified from Luscher)
 ➢ Pressure pipe
 ▪ Hole spanning (interactive design)
 ▪ Full hoop stress (independent design)
 ➢ Standard has a minimum stiffness requirement (Equation X.1.4)
AWWA M28 Class III?

Groundwater pressure
Hole spanning

X1.3.1 Partially Deteriorated Pressure Condition—A CIPP installed in an existing underground pipe is designed to support external hydrostatic loads due to groundwater as well as withstand the internal pressure in spanning across any holes in the original pipe wall. The results of Eq X1.1 are compared to those from Eq X1.6 or Eq X1.7, as directed by Eq X1.5, and the largest of the thicknesses is selected. In an above-ground design condition, the CIPP is designed to withstand the internal pressure only by using Eq X1.5-X1.7 as applicable.

X1.3.2 Fully Deteriorated Pressure Pipe Condition—A CIPP to be installed in an underground condition is designed to withstand all external loads and the full internal pressure. The design thicknesses are calculated from Eq X1.1, Eq X1.3, Eq X1.4, and Eq X1.7, and the largest thickness is selected. If the pipe is above ground, the CIPP is designed to withstand internal pressure only by using Eq X1.7.

External loads
Pipe stiffness
Internal pressure

AWWA M28 Class IV?

Vacuum

X1.4 Negative Pressure—Where the pipe is subject to a vacuum, the CIPP should be designed as a gravity pipe with the external hydrostatic pressure increased by an amount equal to the negative pressure.

ASTM F1216, Appendix X1
Pressure Pipe Lining Design Methodology

• **ASTM F1216 has it all, you say? Why do we need more?**

• Design methods need to reasonably match the products that they are intended for
 - It’s seldom a perfect fit
 - But you need to match the design method to the products

• While F1216 has served the industry well, its evolution was based on:
 - Un-bonded liners
 - Non-reinforced tubes, or at least *Isotropic liner material* behavior
 - Compromises, consensus, and many other things that are a reality of standards
 - Minimum stiffness for flexibility for a close fit liner doesn’t make sense
Longitudinal Design

Temperature Effects

Poisson’s Effect

Thrust Restraint
Alternative design methods:

- **ASME PCC-2, Repair of Pressure Equipment and Piping**
- Case N-589 of ASME Boiler and Pressure Vessel Code, Class 3 Non-Metallic Cured-In-Place Piping, Section XI, Division I
- **ASME B31.1, Power Piping, ASME Code for Pressure Piping, B31**
- AWWA “Structural Classifications of Linings” (white paper w/2019 target publication date)
- **AWWA C305-18, CRFP Renewal and Strengthening of Prestressed Concrete Cylinder Pipe (PCCP)**

<table>
<thead>
<tr>
<th>Design Check</th>
<th>ASTM F1216</th>
<th>ASME PCC-2</th>
<th>ASME N-589</th>
<th>ASME B31.1</th>
<th>AWWA SCL</th>
<th>AWWA C305</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoop Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Pressure</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Transient Pressure</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Vacuum Pressure</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Live loads</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Soil loads</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Ovality</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Deflection Limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Combined Loading</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Longitudinal Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisson’s Effect</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Temperature Effect</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Thrust Effect</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Design Method *</td>
<td>ASD</td>
<td>ASD</td>
<td>ASD</td>
<td>ASD</td>
<td>ASD</td>
<td>LRFD</td>
</tr>
</tbody>
</table>

* ASD = allowable strength design; LRFD = load & resistance factor design
AWWA Structural Classifications of Linings (SCL) White Paper

- Developed through AWWA’s Structural Classifications Subcommittee
- Established more concrete definitions, design and testing criteria for Class I through IV lining systems
- Each structural classification presented as a sequential building block
- Targeted for publication in 2019
- Content will be included in the next revision of AWWA M28

<table>
<thead>
<tr>
<th>Liner Characteristics</th>
<th>Non-Structural</th>
<th>Semi-Structural (Interactive)</th>
<th>Fully Structural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal Coating</td>
<td>Hole span</td>
<td>Hole span + ring stiffness</td>
</tr>
<tr>
<td>Class I</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Class II</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Class III</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Class IV</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

1. The Owner/Engineer must specify whether vacuum loads exist. For Class I and II systems, this is addressed through reliable adhesion to the host pipe, which is a characteristic of all Class I and some Class I linings.

2. For Class III and IV linings, adhesion is not required to develop ring stiffness. However, it may be necessary to achieve a watertight seal (for example, at services and liner terminations). There are also situations where adhesion is not desirable, such as applications with broad temperature swings and in Class IV linings where the host pipe is anticipated to experience brittle failure modes.
Selection of an appropriate lining system based on design objectives

Type Testing
- Provided by the lining system manufacturer
- Confirms material properties and performance used for basis of design
 - Field manufacturing or fabrication of lining system (e.g. CML, PL, CIPP)
- May include:
 - Chemical resistance
 - NSF/ANSI Standard 61 certification
 - Mechanical properties (e.g. tensile, flexural and compressive)
 - Abrasion resistance
 - Adhesion properties
 - Short-term burst pressure
 - HDB testing

Short-Term Testing
- ASTM D790 Flexural
- ASTM D2290 Tensile
- ASTM D638
- ASTM D1599 Short-Term Burst
Type Testing (Long-Term)

- DIN EN 761
- ASTM D2990

Flexural Creep

- ASTM D2990

Tensile Creep

- ASTM D2992

Hydrostatic Design Basis (HDB)
Demonstration Testing

Manufacturing

Adhesion Testing

New or Future Connections
Acceptance Testing
• Ensures a quality lining system has been installed
• Confirms contractual requirements and the basis of design are satisfied
• May include:
 ➢ Measuring applied thickness and consistency of the installed materials
 ➢ Adhesion testing
 ➢ Short-term mechanical properties testing from field samples
 ➢ Hydrostatic leakage (pressure) testing
 ➢ Visual/CCTV inspection
 ➢ Bacteriological testing
<table>
<thead>
<tr>
<th>Lining System</th>
<th>Overall Guidance</th>
<th>Type Tests</th>
<th>Acceptance Tests</th>
</tr>
</thead>
</table>
| CML | AWWA C602 | Compressive strength (ASTM C39)
| | | Slump Test (ASTM C143) | Compressive strength (ASTM C39)
| | | | Visual inspection for defects
| | | | Surface finish - Hazen-Williams Coefficient |
| PL | AWWA C620 | Flexural (ASTM D790), Tensile (ASTM D638)
| | AWWA C210 | Adhesion (ASTM D4541 and ASTM D3359)
| | ASTM F2831 | Sag resistance | Dry film thickness
| | ASTM F3182 | | Adhesion
| | | | Hydrostatic leakage test (ASTM F1216) |
| CIPP | ASTM D5813 | Tensile (ASTM D638 and ASTM D2290)
| | ASTM F1216 | Flexural (ASTM D790) | Tensile (ASTM D638/D2290)
| | ASTM F1743 | Tensile Creep (ASTM D2990) | Flexural (ASTM D790)
| | ASTM F2019 | Burst (ASTM D1599) | Tensile Creep (ASTM D2990)
| | | HDB (ASTM D2992) | Burst (ASTM D1599)
| | | | HDB (ASTM D2992)
| | | | Hydrostatic leakage test (ASTM F1216) |
| CFL & SL | ASTM F585 | AWWA C901/C906
| | | ASTM D3350 | Hydrostatic pressure test (ASTM F2164) |
| | | AWWA C900/C905
| | | ASTM D1784 | |
| CFRP | AWWA C305 | Tensile (ASTM D3039) | Tensile (ASTM D3039)
| | | Compressive (ASTM D6641) | Compressive (ASTM D6641)
| | | Shear (ASTM D7616) | Shear (ASTM D7616)
| | | |
Type and Acceptance Test Sampling Requirements Example (CIPP)

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Diameter Range</th>
<th>Test Results Desired</th>
<th>CIPP Installed Thickness</th>
<th>Minimum Sample Dimensions Required</th>
<th>Total Samples Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrained Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM D2290 (Tensile)</td>
<td>Up to 16 in*</td>
<td>x</td>
<td>3-15 mm</td>
<td>18 in long</td>
<td>1</td>
</tr>
<tr>
<td>ASTM D638 (Tensile)</td>
<td>All</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM D790 (Flexural)</td>
<td>All</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plate Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM D638 (Tensile)</td>
<td>All</td>
<td>x</td>
<td>3-6 mm</td>
<td>10 in x 18 in OR 10 in x 10 in</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 in x 23 in OR 13 in x 13 in</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM D790 (Flexural)</td>
<td></td>
<td></td>
<td>7.5-12 mm</td>
<td>13 in x 23 in OR 13 in x 13 in</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.5-15 mm</td>
<td>14 in x 25 in OR 14 in x 14 in</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

* Dependent on capabilities of third party test lab
Questions?

Chris Macey, P. Eng.
Americas Technical Practice Leader
Condition Assessment and Rehabilitation
D: 204.928.7423
C: 204.792.5017
chris.macey@aecom.com

David P. Kozman, P.E.
Applications Engineer
Mobile (614) 832-2860
dkozman@hhtrenchless.com